
Correlating Low-Level Events
To Identify

High-Level Bot Behaviors

Liz Stinson
John Mitchell

Stanford University

Lorenzo Martignoni
University of Milan

Matt Fredrikson
Somesh Jha

University of Wisconsin

Our anti-inspirations

• “Personal firewalls”: identify when an app is
connecting to the network

• Host-level methods that inundate us with
information (all registry accesses/changes,
file accesses/changes) without providing a
higher-level assessment of what’s going on

Too ambiguous

Too noisy; devoid of meaning

Problem Statement

• >5M “distinct, active” bot-infected machines
detected between January - June, 2007
– “active”: carried out at least one attack
– Symantec Threat Report, Volume XII

• The *best* anti-virus signature scanners fail
to detect anywhere from 30% to 50% of
malware samples seen in the wild
– NB: The best AV scanners may not be who

you think they are…

Problematic Asymmetry

work(create_sig) >> work(create_variant)

• AV companies decide which undetected
malware to create sigs for using triage; must
exceed some prevalence threshold

Malware writers know they have the
advantage here and they exploit it.

Tens of thousands of novel
malware variants created annually

Existing behavior-based detection

• Identify simple, mostly stateless “features”
(process execution characteristics); e.g.
– Which dir(s) does app live in? write to? App = shadow?
– App survives reboot? Spawns/terminates other

processes? Is orphan? Hides? Its image has changed?
Traits malware have adapted to evade AV detect

• Statefully scan network packet contents
• More general characterizations

– Abstract: spyware monitors/reports user actions
– Concrete: rootkits that load kernel modules

May identify incidental, rather
than fundamental behaviors

For ML-based approaches, may be
other ways to achieve same end
(i.e. ways not included in model)

Broad spectrum. How to evaluate?

• How effectively does this method distinguish
malicious behavior from benign?

• How thoroughly is target behavior captured?
• How complex is the identified behavior?
• How fundamental is the behavior to the

malware’s purpose?

Goals
• We want to identify high-level behaviors

– “downloading and executing a program”
– “acting like a TCP server”
– “acting like a proxy”
– “leaking sensitive data”

• Bot-command-level actions
• Via monitoring process execution
• Distinguish malicious from benign instances

of above by identifying if remotely initiated

http.execute <URL> <local_path>
harvest.registry <reg_key>
redirect <lport> <rhost> <rport>
startkeylogger

Sample bot commands

tcp connection

t
c
p

c
o
n
n
e
c
t
i
o
nExample:

Acting like a proxy

Not shown here
edge constraints

die operations

socket duplication

intervening irrelevant ops

Identifies ordering dependencies

Including parameters
and constraints

Constraints can be
pre-conditions

or post-conditions

tcp_client

We’ll focus on this

Refining

(send_buf == recv_buf)

• Too constrained; really want to express: the
buffer that is sent is derived from a buffer that
is received

• Augment (add action to): on_match of net_recv

• Change condition to:

set_tainted(recv_buf, sd2 /*taint label*/)

tainted(send_buf, sd2 /*taint label*/)

Modified graph

.redirect <loc_port> <rem_host> <rem_port>

Add constraints

“Language” our system exports
• Set of high-level primitives that can be

combined to describe interesting behaviors
– tcp_client, tcp_server, net_send, net_r
ecv, create_exec_file, …

• Using these, we can detect:
– Leak private data (reg key values, file

contents, system info, …)
– Download and execute a program
– Send email
– Proxy
– Keystroke logging

Challenges

• Posed by proprietary-OS environment
– Opacity; identifying operations & constraints
– Replicating OS semantics

• Posed by syscall interposition generally
• Posed by hypothetical attempts to evade

– Split behavior across processes or across
runs of the same application

– Expropriate kernel functionality
• e.g. raw sockets

Summary

Target the behaviors that make bots useful
Identify the essential ops in those behaviors
Use data-flow analysis info variously
Good initial results against bots

o Including: rbot, agobot, dsnxbot, spybot, ...
o Use bot commands as inspiration
o Resilient to encryption of bot communications
Good initial results against benign progs

o When testing against specifications that encode
remote-control requirement

o Performing user-input tracking

	Correlating Low-Level Events �To Identify �High-Level Bot Behaviors
	Our anti-inspirations
	Problem Statement
	Problematic Asymmetry
	Existing behavior-based detection
	Broad spectrum. How to evaluate?
	Goals
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	(send_buf == recv_buf)
	Slide Number 14
	.redirect <loc_port> <rem_host> <rem_port>
	“Language” our system exports
	Challenges
	Summary

