Correlating Low-Level Events
To ldentify
High-Level Bot Behaviors

Liz Stinson Matt Fredrikson

John Mitchell Somesh Jha
University of Wisconsin

Stanford University

Lorenzo Martignoni
University of Milan

Our anti-inspirations

N app IS

' ch;e Too ambiguous

e Host-level methods that inundate us with

:JJ Too noisy; devoid of meaning

higher-level assessment of what’s going on

Problem Statement

o« >5M “distinct, active” bot-infected machines
detected between January - June, 2007
— “active”: carried out at least one attack
— Symantec Threat Report, Volume XI|

* The *best* anti-virus signature scanners fail
to detect anywhere from 30% to 50% of
malware samples seen in the wild

— NB: The best AV scanners may not be who
you think they are...

Problematic Asymmetry

work| Malware writers know they have the nt)
advantage here and they explolt It.

Existing behavior-based detection

) l(c May identify incidental, rather
F than fundamental behawors "
S —— oo re—>ahnadow?

— Ann suirvives rehont? Snawns/terminates nther

For ML-based approaches, may be |ged?
2| other ways to achieve same end ptect
(I.e. ways not included in model)

 More general characterizations
— Abstract: spyware monitors/reports user actions
— Concrete: rootkits that load kernel modules

£ A

Broad spectrum. How to evaluate?

How effectively does this method distinguish
malicious behavior from benign?

How thoroughly Is target behavior captured?
How complex is the identified behavior?

How fundamental i1s the behavior to the
malware’s purpose?

Goals

We wi OIS

Sample bot commands

— “*doWrmoaunmyarnuexecunny a prograrnT

Via monitoring process execution

Distinguish malicious from benign instances
of above by identifying If remotely initiated

Example:
Acting like a proxy

webh browser

tcp connection

|dentifies ordering dependencies

/

- -
- -
- -

Not shown here

edge constraints

die operations

socket duplication

IEED P CEays

Intervening irrelevant ops

Including parameters
and constraints

tcp server (sdl,
loc ip, loc port,
cli ip, <¢li port)

tcp client (sdoO,
rem ip, rem port)

(sd2 == sdO) sdl)
net recv(sd2z, recv_ _buf) net send(sd3, send buf)
—"--_(recv_len > O)\.~‘.~(send_1en > 0)
Constraints can be RPN .
pre-conditions L
or post-conditions (send_buf —— recv buf)
v

tcp proxy (sd, loc port, rem ip, rem port)

tcp client

Synchronous
TCP cliep

Asynchrynous TCP client

create file create io

g

remove 1o

Refining

Y v

net send(sd3, send buf) net recv(sd2, recv buf)
-> send len -> recv_len

—
7
i .
-
-

~. (send len > 0) . (recv_len > 0)

.
.

We’'ll focus on this —> (send buf == recv buf)

(send buf == recv buf)

e Too constrained; really want to express: the
buffer that i1s sent is derived from a buffer that
IS received

 Augment (add action to). on_match of net_recv

set_tainted(recv_buf, sd2 /*taint label*/)

« Change condition to:

tainted(send buf, sd2 /*taint label*/)

Modified graph

- - -

v

net recwv{sd2, regvy buf)
-> recv_ len

. s (recv len > 0)

v :
et send(sd3, send buf) —
-> gsend len

~ (send_len > 0) -rset tainted(recv buf, sd2)

gtainted (send buf, sd2)

redirect <loc_port> <rem_host> <rem_port>

Add constraints

tainted (rem ip) &&

tainted (loc_ port)

tainted (rem port)

tcp server (sdl,

tcp client (sdo, loc _ip, loc port,

rem _ip, rem_port) cli ip, cli port)
net recv (sd2z, recv buf) net send(sd3, send buf)
-> recv_len -> send len

‘Language” our system exports

o Set of high-level primitives that can be
combined to describe interesting behaviors

—tcp _client, tcp _server, net _send, net r
ecv, create _exec Tile, ...
e Using these, we can detect:

— Leak private data (reg key values, file
contents, system info, ...)

— Download and execute a program
— Send emalll

— Proxy

— Keystroke logging

Challenges

* Posed by proprietary-OS environment
— Opacity; identifying operations & constraints
— Replicating OS semantics

* Posed by syscall interposition generally

 Posed by hypothetical attempts to evade

— Split behavior across processes or across
runs of the same application

— Expropriate kernel functionality
e e.g. raw sockets

Summary

Target the behaviors that make bots useful
ldentify the essential ops in those behaviors
Use data-flow analysis info variously

Good Iinitial results against bots
o Including: rbot, agobot, dsnxbot, spybot, ...
0 Use bot commands as inspiration
0 Resilient to encryption of bot communications

Good Iinitial results against benign progs

0 When testing against specifications that encode
remote-control requirement

o Performing user-input tracking

	Correlating Low-Level Events �To Identify �High-Level Bot Behaviors
	Our anti-inspirations
	Problem Statement
	Problematic Asymmetry
	Existing behavior-based detection
	Broad spectrum. How to evaluate?
	Goals
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	(send_buf == recv_buf)
	Slide Number 14
	.redirect <loc_port> <rem_host> <rem_port>
	“Language” our system exports
	Challenges
	Summary

